Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.016
Filtrar
1.
CNS Neurosci Ther ; 30(5): e14742, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38715283

RESUMO

BACKGROUND: Adenosine A3 receptor (ADORA3) belongs to the adenosine receptor families and the role of ADORA3 in vascular dementia (VaD) is largely unexplored. The present study sought to determine the therapeutic role of ADORA3 antagonist in a mouse model of VaD. METHODS: The GSE122063 dataset was selected to screen the differential expression genes and pathways between VaD patients and controls. A mouse model of bilateral carotid artery stenosis (BCAS) was established. The cognitive functions were examined by the novel object recognition test, Y maze test, and fear of conditioning test. The white matter injury (WMI) was examined by 9.4 T MRI, western blot, and immunofluorescence staining. The mechanisms of ADORA3-regulated phagocytosis by microglia were examined using qPCR, western blot, dual immunofluorescence staining, and flow cytometry. RESULTS: The expression of ADORA3 was elevated in brain tissues of VaD patients and ADORA3 was indicated as a key gene for VaD in the GSE122063. In BCAS mice, the expression of ADORA3 was predominantly elevated in microglia in the corpus callosum. ADORA3 antagonist promotes microglial phagocytosis to myelin debris by facilitating cAMP/PKA/p-CREB pathway and thereby ameliorates WMI and cognitive impairment in BCAS mice. The therapeutic effect of ADORA3 antagonist was partially reversed by the inhibition of the cAMP/PKA pathway. CONCLUSIONS: ADORA3 antagonist alleviates chronic ischemic WMI by modulating myelin clearance of microglia, which may be a potential therapeutic target for the treatment of VaD.


Assuntos
Demência Vascular , Camundongos Endogâmicos C57BL , Microglia , Fagocitose , Receptor A3 de Adenosina , Animais , Humanos , Masculino , Camundongos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Estenose das Carótidas , Demência Vascular/patologia , Demência Vascular/metabolismo , Microglia/metabolismo , Microglia/efeitos dos fármacos , Microglia/patologia , Compostos Orgânicos , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia , Receptor A3 de Adenosina/metabolismo , Receptor A3 de Adenosina/genética , Substância Branca/patologia , Substância Branca/metabolismo , Substância Branca/efeitos dos fármacos
2.
PLoS One ; 19(4): e0299703, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630707

RESUMO

Vascular cognitive impairment (VCI) is the second leading cause of dementia with limited treatment options, characterised by cerebral hypoperfusion-induced white matter rarefaction (WMR). Subcortical VCI is the most common form of VCI, but the underlying reasons for region susceptibility remain elusive. Recent studies employing the bilateral cortical artery stenosis (BCAS) method demonstrate that various inflammasomes regulate white matter injury and blood-brain barrier dysfunction but whether caspase-1 inhibition will be beneficial remains unclear. To address this, we performed BCAS on C57/BL6 mice to study the effects of Ac-YVAD-cmk, a caspase-1 inhibitor, on the subcortical and cortical regions. Cerebral blood flow (CBF), WMR, neuroinflammation and the expression of tight junction-related proteins associated with blood-brain barrier integrity were assessed 15 days post BCAS. We observed that Ac-YVAD-cmk restored CBF, attenuated BCAS-induced WMR and restored subcortical myelin expression. Within the subcortical region, BCAS activated the NLRP3/caspase-1/interleukin-1beta axis only within the subcortical region, which was attenuated by Ac-YVAD-cmk. Although we observed that BCAS induced significant increases in VCAM-1 expression in both brain regions that were attenuated with Ac-YVAD-cmk, only ZO-1 and occludin were observed to be significantly altered in the subcortical region. Here we show that caspase-1 may contribute to subcortical regional susceptibility in a mouse model of VCI. In addition, our results support further investigations into the potential of Ac-YVAD-cmk as a novel treatment strategy against subcortical VCI and other conditions exhibiting cerebral hypoperfusion-induced WMR.


Assuntos
Clorometilcetonas de Aminoácidos , Disfunção Cognitiva , Substância Branca , Animais , Camundongos , Substância Branca/metabolismo , Encéfalo/metabolismo , Caspase 1/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
3.
Clin Transl Med ; 14(4): e1665, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38649789

RESUMO

BACKGROUND: White matter injury (WMI) is an important pathological process after traumatic brain injury (TBI). The correlation between white matter functions and the myeloid cells expressing triggering receptor-2 (TREM2) has been convincingly demonstrated. Moreover, a recent study revealed that microglial sterol metabolism is crucial for early remyelination after demyelinating diseases. However, the potential roles of TREM2 expression and microglial sterol metabolism in WMI after TBI have not yet been explored. METHODS: Controlled cortical injury was induced in both wild-type (WT) and TREM2 depletion (TREM2 KO) mice to simulate clinical TBI. COG1410 was used to upregulate TREM2, while PLX5622 and GSK2033 were used to deplete microglia and inhibit the liver X receptor (LXR), respectively. Immunofluorescence, Luxol fast blue staining, magnetic resonance imaging, transmission electron microscopy, and oil red O staining were employed to assess WMI after TBI. Neurological behaviour tests and electrophysiological recordings were utilized to evaluate cognitive functions following TBI. Microglial cell sorting and transcriptomic sequencing were utilized to identify alterations in microglial sterol metabolism-related genes, while western blot was conducted to validate the findings. RESULTS: TREM2 expressed highest at 3 days post-TBI and was predominantly localized to microglial cells within the white matter. Depletion of TREM2 worsened aberrant neurological behaviours, and this phenomenon was mediated by the exacerbation of WMI, reduced renewal of oligodendrocytes, and impaired phagocytosis ability of microglia after TBI. Subsequently, the upregulation of TREM2 alleviated WMI, promoted oligodendrocyte regeneration, and ultimately facilitated the recovery of neurological behaviours after TBI. Finally, the expression of DHCR24 increased in TREM2 KO mice after TBI. Interestingly, TREM2 inhibited DHCR24 and upregulated members of the LXR pathway. Moreover, LXR inhibition could partially reverse the effects of TREM2 upregulation on electrophysiological activities. CONCLUSIONS: We demonstrate that TREM2 has the potential to alleviate WMI following TBI, possibly through the DHCR24/LXR pathway in microglia.


Assuntos
Lesões Encefálicas Traumáticas , Glicoproteínas de Membrana , Microglia , Receptores Imunológicos , Substância Branca , Animais , Masculino , Camundongos , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/genética , Modelos Animais de Doenças , Receptores X do Fígado/metabolismo , Receptores X do Fígado/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Substância Branca/metabolismo , Substância Branca/patologia
4.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 394-402, 2024 Apr 15.
Artigo em Chinês | MEDLINE | ID: mdl-38660904

RESUMO

OBJECTIVES: To compare the repair effects of different doses of human umbilical cord mesenchymal stem cells (hUC-MSCs) on white matter injury (WMI) in neonatal rats. METHODS: Two-day-old Sprague-Dawley neonatal rats were randomly divided into five groups: sham operation group, WMI group, and hUC-MSCs groups (low dose, medium dose, and high dose), with 24 rats in each group. Twenty-four hours after successful establishment of the neonatal rat white matter injury model, the WMI group was injected with sterile PBS via the lateral ventricle, while the hUC-MSCs groups received injections of hUC-MSCs at different doses. At 14 and 21 days post-modeling, hematoxylin and eosin staining was used to observe pathological changes in the tissues around the lateral ventricles. Real-time quantitative polymerase chain reaction was used to detect the quantitative expression of myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) mRNA in the brain tissue. Immunohistochemistry was employed to observe the expression levels of GFAP and neuron-specific nuclear protein (NeuN) in the tissues around the lateral ventricles. TUNEL staining was used to observe cell apoptosis in the tissues around the lateral ventricles. At 21 days post-modeling, the Morris water maze test was used to observe the spatial learning and memory capabilities of the neonatal rats. RESULTS: At 14 and 21 days post-modeling, numerous cells with nuclear shrinkage and rupture, as well as disordered arrangement of nerve fibers, were observed in the tissues around the lateral ventricles of the WMI group and the low dose group. Compared with the WMI group, the medium and high dose groups showed alleviated pathological changes; the arrangement of nerve fibers in the medium dose group was relatively more orderly compared with the high dose group. Compared with the WMI group, there was no significant difference in the expression levels of MBP and GFAP mRNA in the low dose group (P>0.05), while the expression levels of MBP mRNA increased and GFAP mRNA decreased in the medium and high dose groups. The expression level of MBP mRNA in the medium dose group was higher than that in the high dose group, and the expression level of GFAP mRNA in the medium dose group was lower than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the protein expression of GFAP and NeuN in the low dose group (P>0.05), while the expression of NeuN protein increased and GFAP protein decreased in the medium and high dose groups. The expression of NeuN protein in the medium dose group was higher than that in the high dose group, and the expression of GFAP protein in the medium dose group was lower than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the number of apoptotic cells in the low dose group (P>0.05), while the number of apoptotic cells in the medium and high dose groups was less than that in the WMI group, and the number of apoptotic cells in the medium dose group was less than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the escape latency time in the low dose group (P>0.05); starting from the third day of the latency period, the escape latency time in the medium dose group was less than that in the WMI group (P<0.05). The medium and high dose groups crossed the platform more times than the WMI group (P<0.05). CONCLUSIONS: Low dose hUC-MSCs may yield unsatisfactory repair effects on WMI in neonatal rats, while medium and high doses of hUC-MSCs have significant repair effects, with the medium dose demonstrating superior efficacy.


Assuntos
Animais Recém-Nascidos , Transplante de Células-Tronco Mesenquimais , Ratos Sprague-Dawley , Cordão Umbilical , Substância Branca , Animais , Ratos , Humanos , Cordão Umbilical/citologia , Substância Branca/patologia , Substância Branca/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/análise , Células-Tronco Mesenquimais , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/análise , Proteína Básica da Mielina/metabolismo , Masculino , Apoptose , Feminino , RNA Mensageiro/análise , RNA Mensageiro/metabolismo
5.
Neuroreport ; 35(8): 536-541, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38597261

RESUMO

Transfer RNAs (tRNAs) can regulate cell behavior and are associated with neurological disorders. Here, we aimed to investigate the expression levels of tRNAs in oligodendrocyte precursor cells (OPCs) and their possible roles in the regulation of brain white matter injury (WMI). Newborn Sprague-Dawley rats (postnatal day 5) were used to establish a model that mimicked neonatal brain WMI. RNA-array analysis was performed to examine the expression of tRNAs in OPCs. psRNAtarget software was used to predict target mRNAs of significantly altered tRNAs. Gene ontology (GO) and KEGG were used to analyze the pathways for target mRNAs. Eighty-nine tRNAs were changed after WMI (fold change absolute ≥1.5, P  < 0.01), with 31 downregulated and 58 upregulated. Among them, three significantly changed tRNAs were identified, with two being significantly increased (chr10.trna1314-ProTGG and chr2.trna2771-ProAGG) and one significantly decreased (chr10.trna11264-GlyTCC). Further, target mRNA prediction and GO/KEGG pathway analysis indicated that the target mRNAs of these tRNAs are mainly involved in G-protein coupled receptor signaling pathways and beta-alanine metabolism, which are both related to myelin formation. In summary, the expression of tRNAs in OPCs was significantly altered after brain WMI, suggesting that tRNAs may play important roles in regulating WMI. This improves the knowledge about WMI pathophysiology and may provide novel treatment targets for WMI.


Assuntos
RNA de Transferência , Ratos Sprague-Dawley , Substância Branca , Animais , RNA de Transferência/metabolismo , RNA de Transferência/genética , Substância Branca/metabolismo , Substância Branca/patologia , Ratos , Animais Recém-Nascidos , Células Precursoras de Oligodendrócitos/metabolismo , Lesões Encefálicas/metabolismo , Lesões Encefálicas/genética , Lesões Encefálicas/patologia , RNA Mensageiro/metabolismo
6.
Hum Brain Mapp ; 45(6): e26686, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38647048

RESUMO

Deuterium metabolic imaging (DMI) is an emerging magnetic resonance technique, for non-invasive mapping of human brain glucose metabolism following oral or intravenous administration of deuterium-labeled glucose. Regional differences in glucose metabolism can be observed in various brain pathologies, such as Alzheimer's disease, cancer, epilepsy or schizophrenia, but the achievable spatial resolution of conventional phase-encoded DMI methods is limited due to prolonged acquisition times rendering submilliliter isotropic spatial resolution for dynamic whole brain DMI not feasible. The purpose of this study was to implement non-Cartesian spatial-spectral sampling schemes for whole-brain 2H FID-MR Spectroscopic Imaging to assess time-resolved metabolic maps with sufficient spatial resolution to reliably detect metabolic differences between healthy gray and white matter regions. Results were compared with lower-resolution DMI maps, conventionally acquired within the same session. Six healthy volunteers (4 m/2 f) were scanned for ~90 min after administration of 0.8 g/kg oral [6,6']-2H glucose. Time-resolved whole brain 2H FID-DMI maps of glucose (Glc) and glutamate + glutamine (Glx) were acquired with 0.75 and 2 mL isotropic spatial resolution using density-weighted concentric ring trajectory (CRT) and conventional phase encoding (PE) readout, respectively, at 7 T. To minimize the effect of decreased signal-to-noise ratios associated with smaller voxels, low-rank denoising of the spatiotemporal data was performed during reconstruction. Sixty-three minutes after oral tracer uptake three-dimensional (3D) CRT-DMI maps featured 19% higher (p = .006) deuterium-labeled Glc concentrations in GM (1.98 ± 0.43 mM) compared with WM (1.66 ± 0.36 mM) dominated regions, across all volunteers. Similarly, 48% higher (p = .01) 2H-Glx concentrations were observed in GM (2.21 ± 0.44 mM) compared with WM (1.49 ± 0.20 mM). Low-resolution PE-DMI maps acquired 70 min after tracer uptake featured smaller regional differences between GM- and WM-dominated areas for 2H-Glc concentrations with 2.00 ± 0.35 mM and 1.71 ± 0.31 mM, respectively (+16%; p = .045), while no regional differences were observed for 2H-Glx concentrations. In this study, we successfully implemented 3D FID-MRSI with fast CRT encoding for dynamic whole-brain DMI at 7 T with 2.5-fold increased spatial resolution compared with conventional whole-brain phase encoded (PE) DMI to visualize regional metabolic differences. The faster metabolic activity represented by 48% higher Glx concentrations was observed in GM- compared with WM-dominated regions, which could not be reproduced using whole-brain DMI with the low spatial resolution protocol. Improved assessment of regional pathologic alterations using a fully non-invasive imaging method is of high clinical relevance and could push DMI one step toward clinical applications.


Assuntos
Encéfalo , Deutério , Glucose , Humanos , Glucose/metabolismo , Adulto , Masculino , Feminino , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Adulto Jovem , Espectroscopia de Ressonância Magnética/métodos , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/metabolismo , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo
7.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674030

RESUMO

Age-associated deep-subcortical white matter lesions (DSCLs) are an independent risk factor for dementia, displaying high levels of CD68+ microglia. This study aimed to characterize the transcriptomic profile of microglia in DSCLs and surrounding radiologically normal-appearing white matter (NAWM) compared to non-lesional control white matter. CD68+ microglia were isolated from white matter groups (n = 4 cases per group) from the Cognitive Function and Ageing Study neuropathology cohort using immuno-laser capture microdissection. Microarray gene expression profiling, but not RNA-sequencing, was found to be compatible with immuno-LCM-ed post-mortem material in the CFAS cohort and identified significantly differentially expressed genes (DEGs). Functional grouping and pathway analysis were assessed using the Database for Annotation Visualization and Integrated Discovery (DAVID) software, and immunohistochemistry was performed to validate gene expression changes at the protein level. Transcriptomic profiling of microglia in DSCLs compared to non-lesional control white matter identified 181 significant DEGs (93 upregulated and 88 downregulated). Functional clustering analysis in DAVID revealed dysregulation of haptoglobin-haemoglobin binding (Enrichment score 2.5, p = 0.017), confirmed using CD163 immunostaining, suggesting a neuroprotective microglial response to blood-brain barrier dysfunction in DSCLs. In NAWM versus control white matter, microglia exhibited 347 DEGs (209 upregulated, 138 downregulated), with significant dysregulation of protein de-ubiquitination (Enrichment score 5.14, p < 0.001), implying an inability to maintain protein homeostasis in NAWM that may contribute to lesion spread. These findings enhance understanding of microglial transcriptomic changes in ageing white matter pathology, highlighting a neuroprotective adaptation in DSCLs microglia and a potentially lesion-promoting phenotype in NAWM microglia.


Assuntos
Envelhecimento , Barreira Hematoencefálica , Microglia , Transcriptoma , Substância Branca , Humanos , Microglia/metabolismo , Microglia/patologia , Substância Branca/metabolismo , Substância Branca/patologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Masculino , Feminino , Envelhecimento/genética , Idoso , Perfilação da Expressão Gênica/métodos , Idoso de 80 Anos ou mais , Neuroproteção/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos CD/metabolismo , Antígenos CD/genética
8.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674040

RESUMO

Schizophrenia is a significant worldwide health concern, affecting over 20 million individuals and contributing to a potential reduction in life expectancy by up to 14.5 years. Despite its profound impact, the precise pathological mechanisms underlying schizophrenia continue to remain enigmatic, with previous research yielding diverse and occasionally conflicting findings. Nonetheless, one consistently observed phenomenon in brain imaging studies of schizophrenia patients is the disruption of white matter, the bundles of myelinated axons that provide connectivity and rapid signalling between brain regions. Myelin is produced by specialised glial cells known as oligodendrocytes, which have been shown to be disrupted in post-mortem analyses of schizophrenia patients. Oligodendrocytes are generated throughout life by a major population of oligodendrocyte progenitor cells (OPC), which are essential for white matter health and plasticity. Notably, a decline in a specific subpopulation of OPC has been identified as a principal factor in oligodendrocyte disruption and white matter loss in the aging brain, suggesting this may also be a factor in schizophrenia. In this review, we analysed genomic databases to pinpoint intersections between aging and schizophrenia and identify shared mechanisms of white matter disruption and cognitive dysfunction.


Assuntos
Envelhecimento , Oligodendroglia , Esquizofrenia , Humanos , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Esquizofrenia/genética , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Envelhecimento/metabolismo , Animais , Genômica/métodos , Substância Branca/metabolismo , Substância Branca/patologia , Bainha de Mielina/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia
9.
Acta Neuropathol Commun ; 12(1): 45, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509621

RESUMO

Interactions between extracellular matrix (ECM) proteins and ß1 integrins play an essential role maintaining vascular integrity in the brain, particularly under vascular remodeling conditions. As blood vessels in the spinal cord are reported to have distinct properties from those in the brain, here we examined the impact of ß1 integrin inhibition on spinal cord vascular integrity, both under normoxic conditions, when blood vessels are stable, and during exposure to chronic mild hypoxia (CMH), when extensive vascular remodeling occurs. We found that a function-blocking ß1 integrin antibody triggered a small degree of vascular disruption in the spinal cord under normoxic conditions, but under hypoxic conditions, it greatly enhanced (20-fold) vascular disruption, preferentially in spinal cord white matter (WM). This resulted in elevated microglial activation as well as marked loss of myelin integrity and reduced density of oligodendroglial cells. To understand why vascular breakdown is localized to WM, we compared expression levels of major BBB components of WM and grey matter (GM) blood vessels, but this revealed no obvious differences. Interestingly however, hypoxyprobe staining demonstrated that the most severe levels of spinal cord hypoxia induced by CMH occurred in the WM. Analysis of brain tissue revealed a similar preferential vulnerability of WM tracts to show vascular disruption under these conditions. Taken together, these findings demonstrate an essential role for ß1 integrins in maintaining vascular integrity in the spinal cord, and unexpectedly, reveal a novel and fundamental difference between WM and GM blood vessels in their dependence on ß1 integrin function during hypoxic exposure. Our data support the concept that the preferential WM vulnerability described may be less a result of intrinsic differences in vascular barrier properties between WM and GM, and more a consequence of differences in vascular density and architecture.


Assuntos
Substância Branca , Humanos , Substância Branca/metabolismo , Integrina beta1/metabolismo , Remodelação Vascular/fisiologia , Medula Espinal/metabolismo , Substância Cinzenta/metabolismo , Hipóxia/metabolismo
10.
CNS Neurosci Ther ; 30(3): e14666, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38468126

RESUMO

AIM: To explore the neuroprotective potential of hyperforin and elucidate its underlying molecular mechanisms involved in its therapeutic effects against vascular cognitive impairment (VCI). METHODS: The active compounds and possible targets of Hypericum perforatum L. that may be effective against VCI were found by network pharmacology in this research. We utilized bilateral common carotid artery occlusion (BCCAO) surgery to induce a VCI mouse model. Morris water maze (MWM) and Y-maze tests were used to assess VCI mice's cognitive abilities following treatment with hyperforin. To evaluate white matter lesions (WMLs), we utilized Luxol fast blue (LFB) stain and immunofluorescence (IF). Neuroinflammation was assessed using IF, western blot (WB), and enzyme-linked immunosorbent assay (ELISA). The effects of hyperforin on microglia were investigated by subjecting the BV2 microglial cell line to oxygen-glucose deprivation/reperfusion (OGD/R) stimulation. The expressions of VEGFR2 , p-SRC, SRC, VEGFA, and inflammatory markers including IL-10, IL-1ß, TNF-α, and IL-6 were subsequently assessed. RESULTS: The VEGFR2 /SRC signaling pathway is essential for mediating the protective properties of hyperforin against VCI according to network pharmacology analysis. In vivo findings demonstrated that hyperforin effectively improved BCCAO-induced cognitive impairment. Furthermore, staining results showed that hyperforin attenuated WMLs and reduced microglial activation in VCI mice. The hyperforin treatment group's ELISA results revealed a substantial decrease in IL-1ß, IL-6, and TNF-α levels. According to the results of in vitro experiments, hyperforin decreased the release of pro-inflammatory mediators (TNF-α, IL-6, and IL-1ß) and blocked microglial M1-polarization by modulating the VEGFR2 /SRC signaling pathway. CONCLUSION: Hyperforin effectively modulated microglial M1 polarization and neuroinflammation by inhibiting the VEGFR2 /SRC signaling pathways, thereby ameliorating WMLs and cognitive impairment in VCI mice.


Assuntos
Disfunção Cognitiva , Floroglucinol/análogos & derivados , Terpenos , Substância Branca , Camundongos , Animais , Microglia , Doenças Neuroinflamatórias , Fator de Necrose Tumoral alfa/metabolismo , Substância Branca/metabolismo , Interleucina-6/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo
11.
Mol Ther ; 32(5): 1328-1343, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38454603

RESUMO

Vanishing white matter (VWM) is a fatal leukodystrophy caused by recessive mutations in subunits of the eukaryotic translation initiation factor 2B. Currently, there are no effective therapies for VWM. Here, we assessed the potential of adenine base editing to correct human pathogenic VWM variants in mouse models. Using adeno-associated viral vectors, we delivered intein-split adenine base editors into the cerebral ventricles of newborn VWM mice, resulting in 45.9% ± 5.9% correction of the Eif2b5R191H variant in the cortex. Treatment slightly increased mature astrocyte populations and partially recovered the integrated stress response (ISR) in female VWM animals. This led to notable improvements in bodyweight and grip strength in females; however, locomotor disabilities were not rescued. Further molecular analyses suggest that more precise editing (i.e., lower rates of bystander editing) as well as more efficient delivery of the base editors to deep brain regions and oligodendrocytes would have been required for a broader phenotypic rescue. Our study emphasizes the potential, but also identifies limitations, of current in vivo base-editing approaches for the treatment of VWM or other leukodystrophies.


Assuntos
Dependovirus , Modelos Animais de Doenças , Fator de Iniciação 2B em Eucariotos , Edição de Genes , Leucoencefalopatias , Fenótipo , Animais , Camundongos , Fator de Iniciação 2B em Eucariotos/genética , Fator de Iniciação 2B em Eucariotos/metabolismo , Leucoencefalopatias/genética , Leucoencefalopatias/terapia , Leucoencefalopatias/patologia , Dependovirus/genética , Humanos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Feminino , Mutação , Terapia Genética/métodos , Substância Branca/patologia , Substância Branca/metabolismo , Astrócitos/metabolismo
12.
CNS Neurosci Ther ; 30(2): e14586, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38421091

RESUMO

OBJECTIVE: Scarce evidence is available to elucidate the association between the abnormal microstructure of white matter (WM) and cognitive performance in patients with orthostatic hypotension (OH). This study investigated the microstructural integrity of WM in patients with mild OH (MOH) and severe OH (SOH) and evaluated the association of abnormal WM microstructure with the broad cognitive domains and cognition-related plasma biomarkers. METHODS: Our study included 72 non-OH (NOH), 17 MOH, and 11 SOH participants. Across the groups, the WM integrity was analyzed by neurite orientation dispersion and density imaging (NODDI), and differences in WM microstructure were evaluated by nonparametric tests and post hoc models. The correlations between WM microstructure and broad cognitive domains and cognition-related plasma biomarkers were assessed by Spearman's correlation analysis. RESULTS: The abnormal WM microstructure was localized to the WM fiber bundles in MOH patients but distributed widely in SOH cohorts (p < 0.05). Further analysis showed that the neurite density index of the left cingulate gyrus was negatively associated with amyloid ß-40, glial fibrillary acidic protein, neurofilament light chain, phospho-tau181 (p < 0.05) but positively with global cognitive function (MOCA, MMSE, AER-III), memory, attention, language, language fluency, visuospatial function and amyloid ß-40 / amyloid ß-42 (p < 0.05). Additionally, other abnormal WM microstructures of OH were associated with broad cognitive domains and cognition-related plasma biomarkers to varying degrees. CONCLUSION: The findings evidence that abnormal WM microstructures may present themselves as early as in the MOH phase and that these structural abnormalities are associated with cognitive functions and cognition-related plasma biomarkers.


Assuntos
Hipotensão Ortostática , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo , Peptídeos beta-Amiloides/metabolismo , Neuritos/metabolismo , Hipotensão Ortostática/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Biomarcadores , Encéfalo/metabolismo
13.
Stroke ; 55(4): 1090-1093, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38299349

RESUMO

BACKGROUND: Air pollution particulate matter exposure and chronic cerebral hypoperfusion (CCH) contribute to white matter toxicity through shared mechanisms of neuroinflammation, oxidative stress, and myelin breakdown. Prior studies showed that exposure of mice to joint particulate matter and CCH caused supra-additive injury to corpus callosum white matter. This study examines the role of TLR4 (toll-like receptor 4) signaling in mediating neurotoxicity and myelin damage observed in joint particulate matter and CCH exposures. METHODS: Experiments utilized a novel murine model of inducible monocyte/microglia-specific TLR4 knockout (i-mTLR4-ko). Bilateral carotid artery stenosis (BCAS) was induced surgically to model CCH. TLR4-intact (control) and i-mTLR4-ko mice were exposed to 8 weeks of either aerosolized diesel exhaust particulate (DEP) or filtered air (FA) in 8 experimental groups: (1) control/FA (n=10), (2) control/DEP (n=10), (3) control/FA+BCAS (n=9), (4) control/DEP+BCAS (n=10), (5) i-mTLR4-ko/FA (n=9), (6) i-mTLR4-ko/DEP (n=8), (7) i-mTLR4-ko/FA+BCAS (n=8), and (8) i-mTLR4-ko/DEP+BCAS (n=10). Corpus callosum levels of 4-hydroxynonenal, 8-Oxo-2'-deoxyguanosine, Iba-1 (ionized calcium-binding adapter molecule 1), and dMBP (degraded myelin basic protein) were assayed via immunofluorescence to measure oxidative stress, neuroinflammation, and myelin breakdown, respectively. RESULTS: Compared with control/FA mice, control/DEP+BCAS mice exhibited increased dMBP (41%; P<0.01), Iba-1 (51%; P<0.0001), 4-hydroxynonenal (100%; P<0.0001), and 8-Oxo-2'-deoxyguanosine (65%; P<0.05). I-mTLR4 knockout attenuated responses to DEP/BCAS for all markers. CONCLUSIONS: i-mTLR4-ko markedly reduced neuroinflammation and oxidative stress and attenuated white matter degradation following DEP and CCH exposures. This suggests a potential role for targeting TLR4 signaling in individuals with vascular cognitive impairment, particularly those exposed to substantial ambient air pollution.


Assuntos
Aldeídos , Isquemia Encefálica , Estenose das Carótidas , Substância Branca , Animais , Camundongos , Microglia/metabolismo , Substância Branca/metabolismo , Emissões de Veículos/toxicidade , Doenças Neuroinflamatórias , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Isquemia Encefálica/metabolismo , Material Particulado/toxicidade , Estenose das Carótidas/metabolismo , Camundongos Endogâmicos C57BL
14.
Ann Neurol ; 95(5): 907-916, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38345145

RESUMO

OBJECTIVE: Microglia/macrophages line the border of demyelinated lesions in both cerebral white matter and the cortex in the brains of multiple sclerosis patients. Microglia/macrophages associated with chronic white matter lesions are thought to be responsible for slow lesion expansion and disability progression in progressive multiple sclerosis, whereas those lining gray matter lesions are less studied. Profiling these microglia/macrophages could help to focus therapies on genes or pathways specific to lesion expansion and disease progression. METHODS: We compared the morphology and transcript profiles of microglia/macrophages associated with borders of white matter (WM line) and subpial gray matter lesions (GM line) using laser capture microscopy. We performed RNA sequencing on isolated cells followed by immunocytochemistry to determine the distribution of translational products of transcripts increased in WM line microglia. RESULTS: Cells in the WM line appear activated, with shorter processes and larger cell bodies, whereas those in the GM line appear more homeostatic, with smaller cell bodies and multiple thin processes. Transcript profiling revealed 176 genes in WM lines and 111 genes in GM lines as differentially expressed. Transcripts associated with immune activation and iron homeostasis were increased in WM line microglia, whereas genes belonging to the canonical Wnt signaling pathway were increased in GM line microglia. INTERPRETATION: We propose that the mechanisms of demyelination and dynamics of lesion expansion are responsible for differential transcript expression in WM lines and GM lines, and posit that increased expression of the Fc epsilon receptor, spleen tyrosine kinase, and Bruton's tyrosine kinase, play a key role in regulating microglia/macrophage function at the border of chronic active white matter lesions. ANN NEUROL 2024;95:907-916.


Assuntos
Substância Cinzenta , Macrófagos , Microglia , Esclerose Múltipla , Substância Branca , Humanos , Microglia/metabolismo , Microglia/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Substância Cinzenta/patologia , Substância Cinzenta/metabolismo , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Esclerose Múltipla/metabolismo , Masculino , Feminino , Substância Branca/patologia , Substância Branca/metabolismo , Pessoa de Meia-Idade , Transcriptoma , Adulto , Idoso
15.
Biol Pharm Bull ; 47(1): 104-111, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38171771

RESUMO

White matter lesions induced by chronic cerebral hypoperfusion can cause vascular dementia; however, no appropriate treatments are currently available for these diseases. In this study, we investigated lipid peroxidation, which has recently been pointed out to be associated with cerebrovascular disease and vascular dementia, as a therapeutic target for chronic cerebral hypoperfusion. We used ethoxyquin, a lipid-soluble antioxidant, in a neuronal cell line and mouse model of the disease. The cytoprotective effect of ethoxyquin on glutamate-stimulated HT-22 cells, a mouse hippocampal cell line, was comparable to that of a ferroptosis inhibitor. In addition, the administration of ethoxyquin to bilateral common carotid artery stenosis model mice suppressed white matter lesions, blood-brain barrier disruption, and glial cell activation. Taken together, we propose that the inhibition of lipid peroxidation may be a useful therapeutic approach for chronic cerebrovascular disease and the resulting white matter lesions.


Assuntos
Isquemia Encefálica , Estenose das Carótidas , Transtornos Cerebrovasculares , Demência Vascular , Substância Branca , Animais , Camundongos , Demência Vascular/complicações , Etoxiquina/metabolismo , Etoxiquina/farmacologia , Etoxiquina/uso terapêutico , Substância Branca/metabolismo , Substância Branca/patologia , Isquemia Encefálica/patologia , Transtornos Cerebrovasculares/tratamento farmacológico , Transtornos Cerebrovasculares/complicações , Transtornos Cerebrovasculares/metabolismo , Modelos Animais de Doenças , Estenose das Carótidas/complicações , Estenose das Carótidas/metabolismo , Estenose das Carótidas/patologia , Camundongos Endogâmicos C57BL
16.
J Neuropathol Exp Neurol ; 83(3): 161-167, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38263262

RESUMO

Recombinant human erythropoietin (rh-EPO) has been shown to stimulate neurogenesis and angiogenesis, both of which play crucial roles in the repair of brain injuries. Previously, we observed that rh-EPO treatment effectively reduced brain damage and enhanced angiogenesis in a neonatal rat model of periventricular white matter damage (PWMD). The objective of this research is to investigate the specific mechanism through which rh-EPO regulates angiogenesis following PWMD in premature neonates. We conducted experiments utilizing a neonatal PWMD model. Following rh-EPO treatment, the levels of erythropoietin receptor (EPOR) were found to be increased in the damaged brain of rats. Although the total amount of extracellular signal-regulated kinase (ERK), a downstream protein in the EPO signaling pathway, remained unchanged, there was clear upregulation of phosphorylated ERK1 (p-ERK1) levels. The increase in levels of p-ERK1 was inhibited by an ERK kinase inhibitor, while the total amount of ERK remained unchanged. Conversely, the levels of EPOR were not affected by the inhibitor. Notably, the introduction of rh-EPO led to a significant increase in the frequency of angiogenesis-related cells and the expression levels of angiogenic factors. However, these effects were nullified when the ERK pathway was blocked. These findings indicate that rh-EPO enhances angiogenic responses through the EPOR-ERK1 pathway in a neonatal PWMD model.


Assuntos
Eritropoetina , Substância Branca , Ratos , Animais , Humanos , Animais Recém-Nascidos , Substância Branca/metabolismo , Ratos Sprague-Dawley , Eritropoetina/farmacologia , Eritropoetina/metabolismo , Transdução de Sinais/fisiologia , Receptores da Eritropoetina/metabolismo
17.
Nat Neurosci ; 27(3): 433-448, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38267524

RESUMO

The integrity of myelinated axons relies on homeostatic support from oligodendrocytes (OLs). To determine how OLs detect axonal spiking and how rapid axon-OL metabolic coupling is regulated in the white matter, we studied activity-dependent calcium (Ca2+) and metabolite fluxes in the mouse optic nerve. We show that fast axonal spiking triggers Ca2+ signaling and glycolysis in OLs. OLs detect axonal activity through increases in extracellular potassium (K+) concentrations and activation of Kir4.1 channels, thereby regulating metabolite supply to axons. Both pharmacological inhibition and OL-specific inactivation of Kir4.1 reduce the activity-induced axonal lactate surge. Mice lacking oligodendroglial Kir4.1 exhibit lower resting lactate levels and altered glucose metabolism in axons. These early deficits in axonal energy metabolism are associated with late-onset axonopathy. Our findings reveal that OLs detect fast axonal spiking through K+ signaling, making acute metabolic coupling possible and adjusting the axon-OL metabolic unit to promote axonal health.


Assuntos
Axônios , Substância Branca , Camundongos , Animais , Axônios/fisiologia , Oligodendroglia/metabolismo , Substância Branca/metabolismo , Homeostase , Lactatos/metabolismo
18.
Commun Biol ; 7(1): 105, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228820

RESUMO

Age is a significant but heterogeneous risk factor for acute neuropsychiatric disturbances such as delirium. Neuroinflammation increases with aging but the determinants of underlying risk for acute dysfunction upon systemic inflammation are not clear. We hypothesised that, with advancing age, mice would become progressively more vulnerable to acute cognitive dysfunction and that neuroinflammation and neuronal integrity might predict heterogeneity in such vulnerability. Here we show region-dependent differential expression of microglial transcripts, but a ubiquitously observed primed signature: chronic Clec7a expression and exaggerated Il1b responses to systemic bacterial LPS. Cognitive frailty (vulnerability to acute disruption under acute stressors LPS and double stranded RNA; poly I:C) was increased in aged animals but showed heterogeneity and was significantly correlated with reduced myelin density, synaptic loss and severity of white matter microgliosis. The data indicate that white matter disruption and neuroinflammation may be key substrates of the progressive but heterogeneous risk for delirium in aged individuals.


Assuntos
Disfunção Cognitiva , Delírio , Substância Branca , Camundongos , Animais , Substância Branca/metabolismo , Doenças Neuroinflamatórias , Lipopolissacarídeos , Disfunção Cognitiva/etiologia , Delírio/genética , Delírio/complicações
19.
J Neurochem ; 168(2): 83-99, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38183677

RESUMO

In central nervous system (CNS), demyelination is a pathological process featured with a loss of myelin sheaths around axons, which is responsible for the diseases of multiple sclerosis, neuromyelitis optica, and so on. Transforming growth factor-beta1 (TGF-ß1) is a multifunctional cytokine participating in abundant physiological and pathological processes in CNS. However, the effects of TGF-ß1 on CNS demyelinating disease and its underlying mechanisms are controversial and not well understood. Herein, we evaluated the protective potential of TGF-ß1 in a rodent demyelinating model established by lysophosphatidylcholine (LPC) injection. It was identified that supplement of TGF-ß1 evidently rescued the cognitive deficit and motor dysfunction in LPC modeling mice assessed by novel object recognition and balance beam behavioral tests. Besides, quantified by luxol fast blue staining, immunofluorescence, and western blot, administration of TGF-ß1 was found to significantly ameliorate the demyelinating lesion and reactive astrogliosis by suppressing p38 MAPK pathway. Mechanistically, the results of in vitro experiments indicated that treatment of TGF-ß1 could directly promote the differentiation and migration of cultured oligodendrocytes. Our study revealed that modulating TGF-ß1 activity might serve as a promising and innovative therapeutic strategy in CNS demyelinating diseases.


Assuntos
Lesões Encefálicas , Substância Branca , Animais , Camundongos , Gliose/prevenção & controle , Inflamação , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Roedores , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Substância Branca/metabolismo
20.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38290851

RESUMO

Alzheimer's disease (AD) is the most common form of dementia and results in neurodegeneration and cognitive impairment. White matter (WM) is affected in AD and has implications for neural circuitry and cognitive function. The trajectory of these changes across age, however, is still not well understood, especially at earlier stages in life. To address this, we used the AppNL-G-F/NL-G-F knock-in (APPKI) mouse model that harbors a single copy knock-in of the human amyloid precursor protein (APP) gene with three familial AD mutations. We performed in vivo diffusion tensor imaging (DTI) to study how the structural properties of the brain change across age in the context of AD. In late age APPKI mice, we observed reduced fractional anisotropy (FA), a proxy of WM integrity, in multiple brain regions, including the hippocampus, anterior commissure (AC), neocortex, and hypothalamus. At the cellular level, we observed greater numbers of oligodendrocytes in middle age (prior to observations in DTI) in both the AC, a major interhemispheric WM tract, and the hippocampus, which is involved in memory and heavily affected in AD, prior to observations in DTI. Proteomics analysis of the hippocampus also revealed altered expression of oligodendrocyte-related proteins with age and in APPKI mice. Together, these results help to improve our understanding of the development of AD pathology with age, and imply that middle age may be an important temporal window for potential therapeutic intervention.


Assuntos
Doença de Alzheimer , Substância Branca , Pessoa de Meia-Idade , Humanos , Camundongos , Animais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Substância Branca/metabolismo , Imagem de Tensor de Difusão/métodos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA